Thermal Energy Storage (TES): Load Management? Of Course. Economical? Certainly. But Is It Energy Efficient?

> John S. Andrepont, President The Cool Solutions Company

IDEA Annual Conference Indianapolis, Indiana – June 2010

Outline

- Introduction to Thermal Energy Storage (TES) for District Cooling
- Load Management Impact of TES
- Economics of TES
- Energy / Environmental Aspects of TES
- Role and Value of TES for District Energy
- Summary and Conclusions

Terminology

- CHP Combined Heat & Power (cogen)
- CHW Chilled Water
- CT Combustion Turbine
- DC, DE District Cooling, District Energy
- LTF Low Temperature Fluid
- RTP Real Time Pricing
- TES Thermal Energy Storage
- TIC Turbine Inlet Cooling

Introduction and Background

- TES is often employed in DC systems:
 - district energy utility systems
 - college / university campuses
 - hospital / medical facilities
 - military / other government facilities
 - private industry
- What are the impacts in terms of:
 - Peak electric demand management?
 - Operating and capital costs?
 - Energy use and environmental issues?

Types of TES for District Cooling

- Latent Heat TES Systems
 Typically, *Ice* TES
- Sensible Heat TES Systems
 - Typically, Chilled Water (CHW) TES
 - Also, Low Temp Fluid (LTF) TES

Latent Heat TES Systems

- Phase change TES latent heat of fusion
- The TES medium:
 - usually water (ice) 32 °F phase change temp
 - eutectic salts and paraffin waxes have also been used - warmer (or cooler) phase change temps
- Latent Heat TES System Types:
 - Static solid is frozen, stored, and melted all in one place
 - Dynamic solid is frozen, but then stored and melted away from where it was frozen

Latent Heat TES Systems

- Inherent Benefits, typically:
 - relatively compact storage volume
 - capability (of some ice TES designs) for low supply temps during discharge (34 to 44 °F typ.)
 - standard modular units for small to moderate sizes
- Inherent Drawbacks, typically:
 - low temps required for charging ice TES
 - relatively little economy-of-scale

Sensible Heat TES Systems

- Sensible heat TES sensible heat (Delta T)
- The TES medium:
 - usually water 39 to 42 °F supply temps typ.
 - alternatively, LTF for stratification below 39 °F
- Sensible Heat TES System Types
 - Thermal Stratification warmer & less dense return fluid stored above cooler & more dense supply
 - others multi-tank, baffle-tank, diaphragm-tank, labyrinth-tank; rarely installed since the 1980s

Sensible Heat TES Systems

• Inherent Benefits, typically:

- relative simplicity and efficiency due to relatively constant, warm oper'g temps (discharge = charge)
- dramatic economy-of-scale low capital cost per ton-hr or per ton, for large applications such as DC
- Inherent Drawbacks, typically:
 - Large storage volume (but reduced by 33 to 50% for LTF TES, though still larger than with Ice TES)
 - CHW supply temp limit of 39 to 40 °F for stratified CHW (but 36 °F, 32 °F, and lower, with LTF)

Inherent Characteristics of TES

CHW LTF (typical generalizations only) lce Volume fair good poor good fair Footprint good Modularity excell poor good Economy-of-Scale poor excell good Energy Efficiency fair excell good Low Temp Capability good poor excell Ease of Retrofit fair excell good Rapid Charge/Dischrg Capability fair good good Simplicity and Reliability fair excell good Can Site Remotely from Chillers poor excell excell **Dual-use as Fire Protection** excell poor poor

Peak Load Mgmt with CHW TES

	Capacity	Demand Svg
DE Owner - Location	<u>(Ton-hrs)</u>	<u>(MW x hr/d)</u>
Washington St U - Pullman	17,750	2.1 x 7
Climaespaco - Portugal	39,800	4.3 x 7
U of Alberta - Canada	60,000*	5.8 x 8
Chrysler Tech Ctr - Michigan	68,000	5.3 x 9
OUCooling - Florida	160,000*	16.6 x 8
SEC (TIC) - Saudi Arabia	193,000	30.0 x 6

* pre-designed to expand (56-70%) from CHW to LTF

Net Capital Savings with CHW TES

(TES v chiller plant capacity) Capacity Capital Svg (millions) DE Owner - Location (Ton-hrs) Washington St U - Pullman 17,750 \$1 to 2 Climaespaco - Portugal 39,800 \$2.5 U of Alberta - Canada 60,000* \$6.0 68,000 Chrysler Tech Ctr - Michigan \$3.6 over \$5 160,000* OUCooling - Florida SEC (TIC) - Saudi Arabia 193,000 over \$10

* pre-designed to expand (56-70%) from CHW to LTF

Environmental Benefits of TES

On-site energy efficiency

- Inherent inefficiencies of TES can be small:
 - e.g. ambient heat gain + extra pumping energy
- Inherent <u>efficiencies of TES can compensate:</u>
 night condensing + no low load oper (+ more "free" cool)
- Some TES document 5 to 15% less annual kWh/T-h

"Source" power plant efficiency & emissions

- TES shifts the power plant that is "on the margin":
 - From on-peak times (high fuel use, high emission plants) to off-peak times (lower fuel use, lower emission plants)
 - Fuel, SO_2 , NO_X , CO_2 often reduced 15 to 30% and more!

On-Site Energy Efficiency Benefits

Annual On-Site Energy Use for TES (vs Non-TES) System:

DC-TES Owner	CHW TES	lce TES
<u>Simulations</u>		
California State Univ.	87%	
 Los Angeles County 	75-85%	
State Farm Insurance	97%	
 hypothetical system 	94-95%	105-106%
Measured / Reported Data		
Arizona State Univ.	87%	
Brazosport College	91-92%	
 Texas Instruments 	88%	
 various (averaged) 	0.63 kW/Ton	0.84 kW/Ton

Source Energy & Emission Benefits

Annual Source Energy & Emissions Savings:

		Chilled Water TES	Chilled Water TES versus No TES		
		<u>Wisconsin util #1</u>	<u>Wisconsin util #2</u>		
<u>Ene</u>	ergy Savings				
•	fuel	15 to 18%	15 to 18%		
Em	<u>ission Savin</u> g	<u>js</u>			
•	SO_2	19 to 29%	18 to 22%		
•	N ₂ O	20 to 30%	16 to 19%		
•	NO _x	16 to 19%	16 to 19%		
•	CO_2	11 to 17%	11 to 17%		

Savings in: TX - 10-25%, CA - 20-35%, FL - 30-50%. Savings increasing with growing use of Wind Power.

TES - Complement to Renewables

• E.g. consider a 40,000 Ton peak load DC system:

	Conv'l	Deep Water DC Sys	
	<u>DC Sys</u>	<u>w/o TES</u>	<u>w/ TES</u>
Chiller plant	40,000 T	0	0
Deep pipes/HX	0	40,000 T	30,000 T
Plant capital	\$1,500/T	\$3,000/T	\$3,000/T
CHW TES	0	0	75,000 T-hr
TES capital	0	0	\$80/T-hr
Total capital	\$60 M	\$120 M	\$96 M
Energy use	0.7 kW/T	0.1 kW/T	0.1 kW/T

The Role of TES in Power Gen'n

- TES flattens/matches thermal & elec load profiles.
- CTs are increasingly used for power generation, including in DE / CHP systems. But CT power is derated at high inlet air temps, when power is most in demand and most highly valued.
- By cooling air from 90-100 °F to 40-50 °F, TES (either Ice, CHW, or LTF TES) can typically:
 - increase CT power output by 20 to 30%,
 - improve CT heat rate by ~5%,
 - and do so for ~1/2 the \$/kW of a simple cycle CT.

Value for Future Market Conditions

- TES can have rapid charge/discharge capability:
 - Good match for RTP, "coincident demand", spot mkt \$'s.
- TES capacity can have phased expansion, e.g.:
 - Add modules of Ice TES
 - Increase Delta T of CHW TES
 - Convert CHW TES tank to LTF TES or Ice TES
- TES enhances use and economics of renewables:
 - Deep lake or ocean cooling sources; "free cooling" towers
 - Better matches loads for CHP or wind energy resources
- Increasing TES use in non-traditional applications:
 - Emergency cooling reserve for mission critical facilities
 - Supply-side energy storage in Turbine Inlet Cooling (TIC)

Summary and Conclusions

- TES reduces demand, cuts energy costs.
- Large CHW TES can save multi-million\$ in CapEx.
- TES can reduce energy & emissions:
 on-site energy; plus "source" fuel and emissions.
- TES can enhance the economics of DE & CHP.
- TES can enhance the economics of renewables.
- TES is demand-side & supply-side energy storage. *DE, CHP, and TES are in fact <u>economical</u>, and therefore <u>truly sustainable</u> envir'l technology.*

Questions / Discussion ?

Or for a copy of this presentation, contact:

John S. Andrepont **The Cool Solutions Company** CoolSolutionsCo@aol.com tel: 630-353-9690

