OPTIMIZING TURBINE INLET CHILLING WITH THERMAL ENERGY STORAGE

Chilled Water Thermal Energy Storage (TES)

TES Tank Applications

College Campuses

Government and Municipalities

Private Industry,
Power Plants, and
Data Centers

Natural Gas Power Plant Performance

Performance goes down as outside air temp goes up

Turbine Inlet Chilling (TIC)

Turbine Inlet Chilling System

Chiller Plant with Cooling Towers

Cooling Coil in the Inlet Air Ductwork

Turbine Inlet Chilling Improves NG Power Plant Performance

Turbine Inlet Chilling Improves Gas Turbine Plant Performance

During peak periods, the chillers can be de-energized and the TES tank can provide the cooling

Chilled Water TES Concept

Chilled Water TES Concept

Stratified Chilled Water in a TES Tank

Actual Data – TES Tank at Power Plant in Baytown, TX – 08-22-15

To Optimize the TES Tank Size

Maximize the Chilled Water ΔT to Minimize the TES Tank Volume

TES Tank Volume (Gallons)

		Chilled Water ΔT (°F)					
		<u>10</u>	<u>12</u>	<u>14</u>	<u>16</u>	<u>18</u>	<u>(20</u>)
rs)	5,000	800,000	667,000	572,000	500,000	445,000	400,000
(Ton-hrs)	10,000	1,600,000	1,333,000	1,143,000	1,000,000	890,000	800,000
	15,000	2,400,000	2,000,000	1,715,000	1,500,000	1,333,000	1,200,000
apacity	30,000	4,800,000	4,000,000	3,430,000	3,000,000	2,667,000	2,400,000
TES Ca	50,000	8,000,000	6,670,000	5,720,000	5,000,000	4,450,000	4,000,000
_	100,000	16,000,000	13,330,000	11,430,000	10,000,000	8,900,000	8,000,000

Increasing the CHW ΔT , reduces the tank size

Theoretical Performance Data

CTG Output

95°F

Simple Cycle	MW
GE LM6000PG	39.3
Siemens SGT-800	41.4
Siemens Trent 60	48.9
GE 7FA.03	143.6

Plant Output

95°F

Combined Cycle - 2x1	MW
GE 7FA	429.3
Siemens SGT6-5000F	598.6
MHPSA 501GAC	700.3
MHPSA 501J	844.0
GE 7H.02	855.0

Theoretical Performance Data with Turbine Inlet Chilling

CTG Output		Incremental Output -			
	50°F	TIC			
Simple Cycle	MW	MW	MW	%	
GE LM6000PG	39.3	53.2	13.9	35%	
Siemens SGT-800	41.4	49.2	7.8	19%	
Siemens Trent 60	48.9	61.1	12.2	25%	
GE 7FA.03	143.6	165.9	22.3	16%	
	Incremental Output - 50°F TIC				
Plant Output	95°F	50°F		•	
Plant Output Combined Cycle - 2x1	95°F MW	50°F MW		•	
·			T	iC .	
Combined Cycle - 2x1	MW	MW	MW	C %	
Combined Cycle - 2x1 GE 7FA	MW 429.3	MW 483.4	MW 54.1	C % 13%	
Combined Cycle - 2x1 GE 7FA Siemens SGT6-5000F	MW 429.3 598.6	MW 483.4 660.1	MW 54.1 61.5	13% 10%	
Combined Cycle - 2x1 GE 7FA Siemens SGT6-5000F MHPSA 501GAC	MW 429.3 598.6 700.3	MW 483.4 660.1 801.4	MW 54.1 61.5 101.1	13% 10% 14%	

Theoretical Performance Data with TIC & Thermal Energy Storage

CTG Output		Incremental Output -			Incremental Output -		
	95°F	50°F	•		50°F	TIC + TES	
Simple Cycle	MW	MW	MW	%	MW	MW	%
GE LM6000PG	39.3	53.2	13.9	35%	54.5	15.2	39%
Siemens SGT-800	41.4	49.2	7.8	19%	50.3	8.9	21%
Siemens Trent 60	48.9	61.1	12.2	25%	62.6	13.7	28%
GE 7FA.03	143.6	165.9	22.3	16%	169.5	25.9	18%
Plant Output		Incremental Output -			Incremental Output -		
	95°F	50°F	T	C	50°F	TIC +	- TES
Combined Cycle - 2x1	MW	MW	MW	%	MW	MW	%
GE 7FA	429.3	483.4	54.1	13%	490.8	61.5	14%
Siemens SGT6-5000F	598.6	660.1	61.5	10%	670.8	72.2	12%
MHPSA 501GAC	700.3	801.4	101.1	14%	812.0	111.7	16%
MHPSA 501J	844.0	939.1	95.1	11%	949.2	105.2	12%
GE 7H.02	855.0	970.7	115.7	14%	983.8	128.8	15%

Warren County Generating Station, VA Case Study

3 x MHPSA 501GAC 3 x 7900 ton Chiller Skids 8.9M gal TES tank

Warren County, VA - 23,700 tons Chilling

Warren County, VA – 8.9 MG TES Tank

Warren County, VA 2015 Award Winning Project

Brunswick County, VA 2016 Award Winning Project

Thermal Energy Storage (TES) Tank – Turbine Inlet Cooling (TIC) System

Natural Gas-Fired Power Project of the Year and Best Overall Generation Project of the Year – Awarded by Power Engineering Magazine. The system helps to increase power output by approximately 108 MW on 92°F day.

Natural Gas-Fired Power Project of the Year and Best Overall Generation Project of the Year, Awarded by *Power Engineering* Magazine, December 2016

The Solution

Cool the CT inlet air to achieve as much as a 20 to 30 percent capacity increase and up to a 5 to 10 percent heat rate

Examples of Recent Power Plants thatUtilize a TIC with TES System

		Plant	TES Tai	nk Details	
<u>Application</u>	CT No. x Type	Boost	Ton-hrs	Added M	W's
Elec Utility - TX	1 x SW 501F	17%	28,989	2	
Elec Utility - TX	4 x GE 7FA	11%	110,016	7	
Elec Utility - VA	2 x GE 7FA	14%	78,710	8	
Elec Utility - PA	4 x GE 7FA	13%	123,750	14	
Elec Utility - VA	3x1 1,329 MW CTCC	9%	232,000	18	
Elec Utility - VA	3x1 1,329 MW CTCC	9%	267,800	19	\leftarrow
Elec Utility - VA	3x1 CTCC	10%	268,641	21	
Util - Saudi Arabia	10 x GE 7EA	30%	193,000	31	
Util - Saudi Arabia	40 x GE 7EA	31%	710,000	142	

Several power providers have utilized TIC with TES multiple times

East Coast Electric Utility

Electric utility completed <u>multiple</u> projects (2010-15):

- TIC with TES at 5 different power plants
- TIC with TES provided cooling for 15 CTs (5,700+ MW total)
- Total of ~1 million ton-hrs of Chilled Water TES capacity

Hot weather power enhancement (all 5 projects):

- TIC provided ~600 MW (over 10%) added peak power
- TES provided ~70 MW of load shift
- TES provided ~600 MWh of ES per hot day

...and TES <u>reduced</u> net capital cost of the overall TIC installation in addition to providing 75 MW and 600 MWh TURBINE INLET COOLING

Opportunity to Boost NG Power Plant Output throughout the U.S.

10 States with Highest MW Potential

STATE	Potential MW's From TIC - TES
TX	2,485
FL	1,286
CA	1,228
AZ	1,097
IL	1,070
GA	1,019
NC	846
LA	820
AL	770
PA	757

Estimated 30,000+ MW's of hot weather peaking potential in the US with TIC-TES

Conclusions

- Turbine Inlet Chilling coupled with a Thermal Energy Storage Tank economically enhances the power output on a hot weather day
- TIC & TES are proven technologies
- There are many opportunities at new and existing Natural Gas-Fired Power Plants to enhance the power output using TIC and TES

