TURBINE INLET COOLING ASSOCIATION

Bibliography of Turbine Inlet Cooling (TIC) Publications Updated: January 25, 2019

Please send corrections or additions to: J.S. Andrepont The Cool Solutions Company CoolSolutionsCo@aol.com

Key to TIC Publication Content

Е

Applications and/or Case Studies Α

Design, Technology, and/or Performance Issues D

Economics, Business, and/or Market Issues

Operations and/or Maintenance Issues 0

Year of	Author(s)	Publication Title	Cor	tent
Publ'n	language (if not English)	(Publication Reference)	Primary	Other
2019	Lovelace, C.	Capturing regsification energy to improve turbine performance (Gastech Insights, January 7, 2019)	D	E
2018	Lovelace, C.	Improving Plant Performance and Stability with Turbine Inlet Air Chilling (Gastech, Barcelona, Spain, September 2018)	D	Α, Ε
2018	Andrepont, J.S.	Energy Storage: A Clear Need for the Power Grid - But How Best to Achieve It? (TiCA White Paper, April 2018)	E	A, D
		Case Studies of Utility-Scale Energy Storage: a Complement to Intermittent Renewable Power (Electric Power Conference,		
2018	Andrepont, J.S.	Nashville, Tennessee, March 2018)	Α	D, E
		Enhancing Capacity and Efficiency of Combustion Turbines During Hot Weather Using Turbine Inlet Cooling: An Update on		
2018	Punwani, D.V.	All Technologies (Electric Power Conference, Nashville, Tennessee, March 2018)	D	A, E
		Turbine Inlet Cooling: Updates on All Technologies and Resources for Combustion Turbine Users (Western Turbine Users		
2018	Punwani, D.V.	Confernce, Palm Springs, California, March 2018)	D	A, E
2017	Sims, T.	Pumped Storage for GTs (Power-Gen International, Las Vegas, Nevada, December 2017)	A	D, E
		Enhancing Capacity and Efficiency of Combustion Turbines during Hot Weather using Turbine Inlet Cooling (TIC): Update		
2017	Punwani, D.V.	on All Technologies (Power-Gen International, Las Vegas, Nevada, December 2017)	D	A, E
	Gillespie, M. and Erickson,			
2017	В.	Duke Energy Hines Chiller Uprate Project (Power Engineering magazine, December 2017)	Α	D, O
	Lovelace, C. and			
2017	Kedrowski, C.	Cool It Down (LNG Industry, November 2017)	Α	D
		Modes & Benefits of Coil-Based Inlet Air Conditioning for Gas Turbines (Power-Gen International, Las Vegas, Nevada,		
2015	Stellar Energy	December 2015)	0	D
2015	Green, S.	Achieving Optimal Economic Benefit from Air Inlet Cooling (Power Engineering magazine, August 2015)	D	
	Balek, S. and McDonnell,	The Power of Flexibility - Turbine Inlet Air Chilling Benefits from Leading Edge Control Technology (Power Engineering		
2015	Т.	magazine, August 2015)	0	A, D
		Two Birds with One Stone: NG-fueled peaking capacity for only a few hundred \$/kW plus energy storage at zero extra cost		
2015	Andrepont, J.S.	(Electric Power Conference, Rosemont, Illinois, April 2015)	D	A, E
		An Enormous Emerging Opportunity for District Cooling Developments (International District Energy Association Annual		
2014	Andrepont, J.S.	Conference, Seattle, Washington, June 2014)	E	A, D
2013	Andrepont, J.S.	Trends and Future Strategies: Multi-Hour Energy Storage (Electric Power Conference, Rosemont, Illinois, May 2013	Е	A, D
2012	Dotson, S.	Technologies to Improve Gas Turbine Efficiency (Power Engineering, pp 50-52, July 2012)	D	Е
		Turbine Inlet Cooling Case Study for an Industrial CHP System for Multiple Buildings in the Midwest (International District		
2012	Punwani, D.V.	Energy Association Annual Conference, Chicago, Illinois, June 2012)	Α	D, E
2012	Punwani, D.V.	Turbine Inlet Cooling: An Overview (webinar presentation sponsored by Turbine Inlet Cooling Association, June 2012)	D	Е
		Energy Storage at Near-Zero Capital Cost and Near-100% Efficiency - Thermal Energy Storage coupled with Turbine Inlet		
2012	Andrepont, J.S.	Cooling (Proceedings of Electric Power, Baltimore, Maryland, May 2012)	E	A, D
	Punwani, D.V. and	Benefits of Turbine Inlet Cooling and Thermal Energy Storage for Cogeneration/CHP Systems (Midwest Cogeneration		
2011	Andrepont, J.S.	Association Conference, Elgin, Illinois, October 2011)	D	Е
	•			
		Turbine Inlet Cooling Technologies and Applications for Optimizing Cogeneration / CHP Systems (webinar presentation co-		
2011	Punwani, D.V.	sponsored by Midwest Cogeneration Association and US DOE Midwest Clean Energy Application Center, August 2011)	D	Е
		Combustion Turbine Inlet Cooling for Power Augmentation: An Overview (ASME Turbo Expo, Vancouver, British Columbia,		
2011	Punwani, D.V.	Canada, June 2011)	D	E
	Andrepont, J.S. and	Energy Storage to Help Meet the Challenge of Integrating Renewable Resources (Proceedings of Electric Power,		
2011	Richter, T.	Rosemont, Illinois, May 2011)	E	A, D

0044	Punwani, D.V. and	Optimizing Clean Energy Systems with Thermal Energy Storage and/or Turbine Inlet Cooling (US Clean Heat & Power	5	
2011	Andrepont, J.S.	Association Spring CHP Forum, Washington, DC, May 2011)	D	E
		Hybrid Systems for Cooling Turbine Inlet Air for Preventing Capacity Loss and Energy Efficiency Reduction of Combustion		
2010	Punwani, D.V.	Turbine Systems (ASME Power Conference, Chicago, Illinois, July 2010)	D	E
		Turbine Inlet Cooling: Increased Energy Efficiency & Reduced Carbon Footprint Aspects for District Energy Systems	_	_
2010	Punwani, D.V.	(International District Energy Association Annual Conference, Indianapolis, Indiana, June 2010)	D	E
		Hybrid and LNG Systems for Turbine Inlet Cooling (Competitive Power College Curriculum CPC 504, POWER-GEN	_	_
2009	Punwani, D.V.	International, Las Vegas, Nevada, December 2009)	D	E
		Turbine Inlet Cooling: An Energy Solution That's Better for the Environment, Ratepayers and Plant Owners (TICA White		
2009	TICA	Paper, November 2009)	E	A, D
2009	Gailloreto, S.	Go-to-Market Strategy for Inlet Air Cooling (Diesel & Gas Turbine Worldwide, June 2009)	D	
	Schlom, L.A. and			
2009	Bastianen, M.V.	Increasing Power Output of Gas Turbines Using Evaporative Technologies (<i>Energy-Tech</i> , pp 33-38, June 2009)	D	E, O
		Supporting Renewable Power Generation with Energy Storage - supply-side and demand-side storage that is practical and		
2009	Andrepont, J.S.	economical (Proceedings of Electric Power, Rosemont, Illinois, May 2009)	E	A, D
		Hybrids in Inlet Cooling - Innovative concepts seek to marry evaporative cooling and inlet chilling technologies		
2009	Robb, D.	(Turbomachinery International, Vol 5, No. 2, pp 18-20, March/April 2009)	D	E, O
	Liebendorfer, K.M. and	Bulk Air Cooling - The Optimum Solution for Turbine Inlet Air Chilling (presented at POWER-GEN International, Orlando,		
2008	Furlong, J.	Florida, December 2008)	D	Α
	Voeller, D. and Bastianen,	Turbine Inlet Cooling with Indirect Evaporation: With Greater Density Comes More Power (<i>Energy-Tech</i> , pp 32-36,		
2008	М.	October 2008)	А	D
		Less Moisture Can Mean More Mass - Indirect Evaporative Cooling in Small-scale Applications (Power Engineeing, Vol.		
2008	Blankinship, S.	112, No. 8, pp 62-64, August 2008)	А	D
		Impact of Turbine Inlet Cooling Technologies on Capacity Augmentation and Decrease in Carbon Footprint for Power		
2008	Punwani, D.V.	Production (Proceedings of Electric Power, Baltimore, Maryland, May 2008)	D	E
		Technologies and Economics of Turbine Inlet Cooling Application in Cogeneration (Midwest Cogeneration Association		
2008	Punwani, D.V.	Conference, Countryside, Illinois, May 2008)	D	E
	ASHRAE TC 1.10 -			
2008	Cogeneration Systems	Combustion Turbine Inlet Cooling (ASHRAE Handbook - HVAC Systems and Equipment, Chapter17, pp 17.1-17.6, 2008)	D	E
		First Application of Power Augmentation w/ Inlet Cooling on Syngas Combustion Turbine (to be presented at POWER-GEN		
2007	Shepherd, D.W.	International, New Orleans, Louisiana, December 2007)	D	A, E, O
2007	McNeely, M.	Applying Wet Compression for Turbine Inlet Cooling (Diesel & Gas Turbine Worldwide, July/August 2007)	D	A, E, O
		The Use of Ejector Refrigeration Systems for Turbine Inlet Air Cooling: A Thermodynamic and CFD Study (ASME ES2007-		
2007	Al-Ansary, H.A.	36044, Proceedings of Energy Sustainability, Long Beach, California, June 2007)	D	
		Economic and Environmental Benefits of Bulk Air Cooling: A New Technology That Allows the Flexibility of Evaporative		
2007	Liebendorfer, K.M.	Cooling and Mechanical Chilling (ASHRAE Annual Meeting, 2007)	Е	D
		Turbine Inlet Cooling (TIC): Its Role in the Economics of Emerging Capacity Markets (Electric Power Conference, April		
2007	Pasteris, R.M.	2007)	Е	
		Application of Fogging and Wet Compression with a Feed Back Control System (presented at POWER-GEN International,		
2006	Shepherd, D.W.	Orlando, Florida, December 2006)	D	A, E, O
2006	Kraft, J.E.	Turbine Inlet Cooling System Comparisons (Energy-Tech, pp 36-37, August 2006)	D	A, E
		Inspecting the turbine inlet - Foreign object damage decreases availability (Turbomachinery International, Vol 47, No 4, pp		
2006	Kemmerling, J.	26-28, July/August 2006)	0	
2006	Reitenbach, G.	Beating the Heat with Inlet Cooling (Power, July/August 2006)	D	A, E, O
2006	Andrepont, J.S.	Energy Storage: Not Just R&D Nor Necessarily Expensive (Power Engineering, Vol 110, No 5, pp 56-58, May 2006)	E	A, D
		Maximizing Power Augmentation While Lowering Capital Cost per MW via Turbine Inlet Cooling (TIC) with Thermal Energy		
2006	Andrepont, J.S.	Storage (TES) (Proceedings of Electric Power, Atlanta, Georgia, May 2006)	Е	A. D
		Air conditioning for gas turbines - how to add a few percentage points to efficiency (Cogeneration and On-Site Power		<u> </u>
2006	Flin, D.	Production, Vol 7, No 2, pp 47-61, March-April 2006)	D	А
_,,,,	,	The debate over inlet air cooling - Players argue issues, such as the impact on blades and surge margins	-	
2006	Kalvanaraman. K	(Turbomachinery International, Vol 47, No 2, pp 12-14, March/April 2006)	0	D
	Punwani, D.V. and	To Cool or Not to Cool - Turbine inlet cooling enhances the economics of combined-cycle systems without and even better	,	
2006	Hurlbert, C.M	with, duct firing (Power Engineering, Vol 110, No 2, pp 18-23, February 2006)	F	D
		Combustion Turbine Plant Power Augmentation Using Turbine Inlet Cooling with Thermal Energy Storage (Proceedings of	-	
2005	Andrepont J.S.	POWER-GEN Instructional, Las Vegas, Nevada, December 2005)	F	A D
			-	, .

	Punwani, D.V. and	Turbine Inlet Cooling for Power Augmentation in Combined Heat and Power (CHP) Systems (Proceedings of POWER-GEN		
2005	Andrepont, J.S.	Inetrnational, Las Vegas, Nevada, December 2005)	E	A, D
	Shepherd, D.W. and	Impact of Heat Rate, Emissions and Reliability from the Application of Wet Compression on Combustion Turbines		
2005	Fraser, D.	(presented at POWER-GEN International, Las Vegas, Nevada, December 2005)	D	A, E, O
	Hurlbert, C.M. and	Unearthing Hidden Treasure - When the weather's hot, there's gold in those combustion turbines, just when you need it the		
2005	Punwani, D.V.	most (<i>Power Engineering</i> , November 2005)	E	Α,
		Turbine Inlet Cooling Operation & Maintenance (Generators & Turbines supplement to Energy-Tech, October 2005, pp.8-		_
2005	Salat, J.B.	10)	0	E
	Punwani, D.V. and		_	-
2005	Hurlbert, C.M.	Turbine inlet cooling benefits plant owners and the environment (<i>Power</i> , Vol 149, No 7, pp 64-68, September 2005)	E	D
2005	Liebendorfer, K.M. and	Cooling the Hot Desert Wind: Turbine Inlet Cooling with Thermal Energy Storage Increases Net Power Plant Output by	٨	
2005	Andrepont, J.S.	30% (ASTIKAE TRAISACTIONS 2005, VOLTH, PAIL2, pp 545-550) Wat compression of a power flowibility to corrected visities CTo (Dever Vol 140, No.4, pp 52, 57, May 2005)	A	
2005	Jolly, S., <i>et al.</i>	Wet compression adds power, nextraining to derivative GTS (<i>Power</i>), vol 149, N0 4, pp 32-57, May 2005)	U	A, E, U
2005	Hurlbort C M	A fine for charge : Gas furbine have cleates opportunity for Low Cost, Creen negawaits (Tubornachinery	F	р
2005	Hunbert, C.M.	Comparison of Power Enhancement Ontions for Retrofit to Combined Cycle Power Plants - Phase 2 Report (Proceedings	<u> </u>	
2004	Tillman, T.C.	of POWER-GEN International Session 11C Orlando Elorida December 2004)	Δ	DE
2004	Thirnan, T.O.	Increasing Gas Turbines' Output and Efficiency by Ontimization of a Economy Air Cooling System Using CED Analysis	~	D, L
2004	Hain Y <i>et al</i>	(Proceedings of POWER-GEN International Session 11C, Orlando Elorida December 2004)	р	0
2001		Application of Wet Compression for Aeroderivative Compusition Turbines (Proceedings of POWER-GEN International		
2004	Jolly, S., et al.	Session 11C. Orlando, Florida, December 2004)	D	A.F.O
2004	Graef. P.	Operation and Maintenance of Wetted-Media Evaporative Coolers (Energy-Tech. December 2004, pp 19-20)	0	E E
2004	Andrepont, J.S., et al.	Turbine Inlet Cooling Case Studies and Buyers Guide (A Supplement to Energy-Tech, October 2004, pp 1-16)	A	D, E
2004	Punwani, D.V.	Hybrid Systems & LNG for Turbine Inlet Cooling (Energy-Tech, October 2004, pp 19-20)	D	Ē
2004	Hurlbert, C.M.	A Perspective on the U.S. Electric Power Industry: Problems, Solutions and Needs (Energy-Tech, August 2004, pp 8-11)	Е	
2004	Andrepont, J.S.	Thermal Energy Storage Technologies for Turbine Inlet Cooling (Energy-Tech, August 2004, pp 18-19)	D	Α
2004	Punwani, D.V.	Chiller Technologies for Turbine Inlet Cooling- Part 2 (Energy-Tech, June 2004, pp 19-21)	D	E
2004	Mercer, M.	Wet Compression Technology for Combustion Turbines (Diesel & Gas Turbine Worldwide, May 2004)	D	A, E, O
2004	Kraft, J.E.	Combustion Turbine Inlet Air Cooling - Check Your Design Point (Power Engineering, Vol 108, No 5, pp 40-44, May 2004)	D	A, E, O
		Recent Experience Indicates Wet Compression Meets Expectations When Done Correctly (Combined Cycle Journal,	_	
2004	Schweiger, R.	Second Quarter 2004)	D	A, E, O
			_	
2004	Farmer, R.	On-Site and Maintenance Depot LM2500 Operation and Performance Enhancement (Gas Turbine World, April/May 2004)	D	A, E, O
2004	Punwani, D.V.	Chiller Technologies for Turbine Iniet Cooling (Energy-Tech, April 2004, pp 19-21)	D	E
2004	Dharmadhikari, S. and	Paret are turbles performance by july air cooling (<i>Uturbesetter</i> , Processing, Estructur, 2004, pp. 77.04)	_	۸ F
2004	Andrepont, J.S.	Boost gas turbrie periormance by inter air cooling (<i>myarocarbon Processing</i> , rebruary 2004, pp //-64)		A, E
2004	Elliott	Loot four jets: Evaporative cooling a wet compression rectinitiogree (<i>Energy-recti</i>), rebuild y 2004)		A, E, U
2004	Bupwapi D.V	An Introduction to Turking Inlat Cooling (Energy Toch December 2003, pp. 20, 23)		
2003	Andrepont IS and	An introducion of class Studies of Enlancing the Performance and Economics of Cas Turking Power Plants (Proceedings	D	
2003	Pasteris R M	of POWER-GEN International Session 9C Las Venas Nevada December 2003)	F	ΑD
2000		Comparisons of Power Enhancement Options for Greefield Combined Cycle Power Plants (Proceedings of POWER-GEN	-	π, υ
2003	Tillman, T. C. <i>et al</i> .	International Session 13B Las Vegas Nevada December 2003)	F	A.D
2000		Performance Enhancement of GT24 with Wet Compression (presented at POWER-GEN International, Las Vegas, Nevada,		., 2
2003	Jolly, S. and Clovd, S.	December 2003)	D	A. E. O
2003	O'Hanlon, C,	Emerging Opportunities in Turbine Inlet Air Cooling (Frost & Sullivan Report, November 26, 2003)	E	, _, _
		GT Inlet Cooling Boosts Output on Warm Days to Increase Revenues (Combined Cycle journal, Fourth Quarter 2003.	_	
2003	Punwani, D.V., et al.	Online Version)	D	A, E
2003	Reitenbach, G.	None the Worse for Wear - Fogging Inlet Power (<i>Power</i> , September 2003)	0	A, D, E
2003	Farmer, R.	Evap Cooling and Wet Compression Boost Steam Injected Fr6B Output (Gas Turbine World, Summer 2003)	D	A, E, O
2003	Liebendorfer, K.M.	Commissioning Turbine Inlat Air Chilling Systems (ASHRAE Annual Meeting, 2003)	D	0
2002	MacDanald I A			
2003	MacDonald, J.A.	Turbine Performance-Enhancement Options Boost Power Plant Output, Efficiency (Energy-Tech, June 2003, pp 18-27)	D	

2002	Jolly S	Wet Compression - A Powerful Means of Enhancing Combustion Turbine Capacity (presented at POWER-GEN		
2002	50lly, 0.	International, Orlando, Florida, December 2002)	D	A, E, O
2002	Mercer, M.	One-Stop Shop for Inlet Cooling Systems (Diesel & Gas Turbine Worldwide, June 2002)	A	D, E, O
2002	Chaker, M., et al.	Inlet Fogging of Gas Turbine Engines: Clamatic Analysis of Gas Trurbine Evaporative Cooling Potential of International Locations (ASME Turbo Expo 2002; June 3-6, Amsterdan, The Netherlands)	D	А
2002	Bhargava, R., <i>et al.</i>	Parametric Analysis of Existing Gas Turbines with Inlet Evaporative and Overspary Fogging (ASME Turbo Expo 2002; June 3-6, Amsterdan, The Netherlands)	A	D
2002	Andrepont, J.S.	Demand-side and Supply-side Load Management: Optimizing with TES for the Restructuring Energy Marketplace (Proceedings of the 24th National Industrial Energy Technology Conference, p. 301-305, Texas A&M University)	D	A. E
2001	Andrepont, J.S.	Combustion Turbine Inlet Air Cooling (CTIAC): Benefits and Technology Options in District Energy Applications (ASHRAE Transactions, Vol. 107, Pt. 1, pp. 892-899)	D	A.F
2001	Guimaraes, E.T.	A New Approach to Turbine Inlet Air Cooling (ASHRAE Transactions, Vol. 107, Pt. 1)	A	D, E, O
2001	Punwani, D.V., <i>et al.</i>	A Hybrid System for Combustion Turbine Inlet Air Cooling at a Cogeneration Plant in Pasadena, Texas (ASHRAE Transactions, Vol. 107, Pt. 1)	А	D, E
2001	Stewart, Jr., W.E.	Condensation and Icing in Gas Turbine Systems: Inlet Air Temperature and Humidity Limits ((ASHRAE Transactions, Vol. 107, Pt. 1)	D	
2001	Andrepont, J.S.	Combustion Turbine Inlet Air Cooling (CTIAC): Benefits, Technology Options, and Applications for District Energy (Energy Engineering, Vol. 98, No. 3, pp. 52-69, Association of Energy Engineers, Atlanta, Georgia)	D	A. E
2001	Andrepont, J.S.	Resfriamento de ar de entrada da turbina de combustao (CTIAC): beneficios, opcoes de technologia e applicacoes (Parte		
2001	Portuguese	1, Climatizacao, Ano 2, Numero 8, p. 28-36, RPA Editorial, Sao Paulo, Brazil)	D	
2001	Andrepont, J.S. Portuguese	Resfriamento de ar de entrada da turbina de combustao (CTIAC): beneficios, opcoes de technologia e applicacoes (Parte 2, Climatizacao, Ano 2, Numero 9, p. 34-41, RPA Editorial, Sao Paulo, Brazil)	D	Е
2001	Andrepont, J.S. Portuguese	Resfriamento de ar de entrada da turbina de combustao (CTIAC): beneficios, opcoes de technologia e applicacoes (Parte final, Climatizacao, Ano 2, Numero 10, p. 51-57, RPA Editorial, Sao Paulo, Brazil)	A	E, D
2001	Elliott, J.	Chilled Air Takes Weather Out of Equation (Diesel & Gas Turbine Worldwide, October 2001)	D	A
2001	Punwani, D.V., <i>et al.</i>	Absorption Chiller Application for Power Generation: A Case Study for a 316 MW GT Cogen Plant in Pasadena, TX (Proceedings of the 2001 International Gas Research Conference, Amsterdam, The Netherlands)	A	D,E
2001	Gas Technology Institute GTI)	Absorption Chiller Application Brief: Gas Turbine Inlet Air Cooling (Gas Technology Institute, Document No. GTI-00/0140, Des Plaines, Illinois)	А	D,E
2001	Andrepont, J.S.	Combustion Turbine Inlet Cooling: Benefits and Options for District Energy (<i>District Energy</i> , Vol. 87, No. 3, International District Energy Association (IDEA), Westborough, Massachusetts)	D	A, E
2000	Andrepont, J.S.	Combustion Turbine Inlet Air Cooling (CTIAC): Benefits, Technology Options, and Applications for District Energy (Proceedings of the International District Energy Association, Vol. 91, pp. 183-196, Westborough, Massachusetts)	D	A. E
2000	Tisdale, L.B. and Hauck, R.L.	Combustion Turbine Inlet Conditioning (ASME 2000-GT-192, International Gas Turbine & Aeroengine Congress & Exhibition, Munich, Germany, May 2000)	D	E
2000	Stewart, Jr., W.E., et al.	Air Temperature Depression and Potential Icing at the Inlet of Stationary Combustion Turbines (ASHRAE Transactions, Vol. 106, Pt. 2, pp. 318-327)	D	0
1999	Shepherd, D.W., et al.	Peaking Capacity Enhancement of ABB 11N1 with Thermal Energy Storage (presented at POWER-GEN International, New Orleans, Louisiana)	D	A. E. O
1999	Stewart, Jr., W.E.	Designing for Combustion Turbine Inlet Air Cooling (ASHRAE Transactions, Vol. 105, Pt. 1)	D	E
1999	Stewart, Jr., W.E.	Design Guide: Combustion Turbine Inlet Air Cooling Systems (ASHRAE Special Publications, Atlanta, Georgia)	D	E, A, O
1999	Katipamula, S., et al.	User's Manual for CTCOOL: A Computer Model for Evaluating Combustion Turbiune Inlet Air Cooling (Pacific Northwest National Laboratory, Report No. PNNL-12152, Richland, Washington)	E	D
1999	Punwani, D.V., <i>et al.</i>	Emerging Growth Opportunity for Sorption Heat Pumps: Power Capacity Enahncement of Gas Turbine Systems (International Sorption Heat Pump Newsletter, Vol. 5, No. 4)	A	D,E
1999	Ryan, W.A.	Gas Turbine Inlet Cooling: Another Growth Opportunity for Industrial Absorption Systems (Cool Times, Vol. 10, No. 6, p. 3, American Gas Cooling Center, Washington, DC)	А	D,E
1998	Shepherd, D.W., et al.	Direct Spray System for Inlet Air Cooling W501 B5 (presented at POWER-GEN International, New Orleans. Louisiana)	D	A. E
1998	Stewart, Jr., W.E.	Turbine Inlet Air Cooling (ASHRAE Journal, September 1998, pp. 32-37)	D	A
1998	Shepherd, D.W., et al.	Evaluating Inlet Cooling Systems (presented at POWER-GEN Asia, New Delhi, India)	A	D, E, O
1998	Clark, K.M., et al.	The Application of Thermal Energy Storage for District Cooling and Combustion Turbine Inlet Air Cooling (Proceedings of the International District Energy Association, Vol. 89, pp. 85-97, Westborough, Massachusetts)	А	D, E
1997	Shepherd, D.W., et al.	Inlet Air Cooling for a Frame 7EA based Combined Cycle Power Plant (presented at POWER-GEN International)	D	A, E
1996	Brown, D.R., et al.	A Comparative Assessment of Alternative Combustion Turbine Inlet Air Cooling Systems (Pacific Northwest National Laboratory, Report No. PNNL-10966, Richland, Washington)	D	Е

1996	Utamura, M., et al.	Economics of Gas Turbine Inlet Air Cooling System for Power Enhancement (Proceedings of the 1996 International Gas	F	
1996	Reindl, D.T.	Combustion Turbine Inlet Air Cooling Using Thermal Storage & Direct-Contact Sprays (Proceedings of the EPRI International Sustainable Thermal Energy Storage Conference, Minneapolis, pp. 147-150, August 1996)	D	F
1996	White, C., <i>et al.</i>	Power Boost of Gas Turbines by Inlet Air Cooling (Proceedings of the 31st Intersociety Energy Conversion Eng. Conf., Vol. 2, pp. 725-729, IEEE, Piscataway, NJ)	D	
1996	Bruno, J.C., <i>et al.</i>	Absorption Chillers Integration in a Combined Heat and Power Plant (Proceedings of the International Absorption Heat Pump Conference, pp. 759-767, CANMET, Ottawa, ON, Canada)	D	Е
1995	Mohanty, B., <i>et al.</i>	Enhancing Gas Turbine Performance by Intake Air Cooling Using an Absorption Chiller (Heat Recovery Systems and CHP Journal, Vol. 15, No. 1, pp. 41-50, United Kingdom)	D	Е
1995	Ebeling, J.A., <i>et al.</i>	Fayetteville TIP2 Capacity Performance Test Results (Proceedings of the 57th Annual American Power Conference, Vol. 57, Chicago, Illinois)	А	D
1995	Electric Power Research Insitute (EPRI)	Gas Turbine and Combined-Cycle Capacity Enhancement (Second Interim Report EPRI TR-104612, Electric Power Research institute, Palo Alto, California)	D	E
1995	Kitchen, B.J., <i>et al.</i>	Qualifying Combustion Turbines for Inlet Air Cooling Capacity Enhancement (Proceedings of the International Gas Turbine and Aeroengine Congress & Exhibition, Paper No. 95-GT-266, ASME)	D	
1995	Kohlenberger, C.R.	Gas Turbine Inlet Air Cooling and the Effect on a Westinghouse 501D5 CT (Proceedings of the International Gas Turbine and Aeroengine Congress & Exposition, Paper No. 95-GT-284, ASME)	A	D, O
1995	Cross, J.K., <i>et al.</i>	Modeling of Hybrid Combustion Turbine Inlet Air Cooling Systems (ASHRAE Transactions, Vol. 101, Pt. 2, pp. 1335-1341)	ш	D
1995	Bettocchi, R., et al.	Gas Turbine Inlet Air Cooling Using Non-adiabatic Saturation Process (Proceedings of the 1995 ASME Cogen-Turbo Power Conference, Paper No. 95-CTP-49)	D	E
1994	Andrepont, J.S.	Performance and Economics of CT Inlet Air Cooling Using Chilled Water Storage (ASHRAE Transactions, Vol. 100, Pt. 1, pp. 587-594)	E	D
1994	Ebeling, J.A., <i>et al.</i>	Combustion Turbine Inlet Air Cooling Using Ammonia-Based Refrigeration for Capacity Enhancement (ASHRAE Transactions, Vol. 100, Pt. 1, pp. 583-586)	D	E
1994	Hall, A.D., <i>et al.</i>	Gas Turbine Inlet-Air Chilling at a Cogeneration Facility (ASHRAE Transactions, Vol. 100, Pt. 1, pp. 596-601)	A	D, E
1994	MacCracken, C.D.	Overview of the Progress and the Potential of Thermal Storage in Off-Peak Turbine Inlet Cooling (ASHRAE Transactions, Vol. 100, Pt. 1, pp. 569-571)	D	E, A
1994	Mackie, E.I.	Inlet Air Cooling for a Combustion Turbine Using Thermal Storage (ASHRAE Transactions, Vol. 100, Pt. 1, pp. 572-582)	А	D, E
1994	Andrepont, J.S. and Steinmann, S.L.	Summer Peaking Capacity Via Chilled Water Storage Cooling of Combustion Turbine Inlet Air (Proceedings of the 56th Annual American Power Conference, Vol. 56, Pt. 2, pp. 1345-1350, Chicago, Illinois)	E	D
1994	Lamfon, N.J., et al.	Thermophysical Relationships for Waste Heat Recovery Using Looped Heat Pipes (International Journal of Energy Research, Vol. 18, No. 7, pp. 633-642, United Kingdom)	D	
1994	Ebeling, J.A.	Qualitative Analysis of Combustion Turbine Inlet Aircooling Alternatives with Case Histories (Proceedings of the ASME Joint International Power Generation Conference, Paper No. 94-JPGC-GT-4)	D	A, E
1994	Ebeling, J.A.	Combustion Turbine Inlet Air Cooling Alternatives and Case Histories (Proceedings of the 27th Annual Frontiers of Power Conference, pp. X-1 - X-6, Oklahoma State Univ., Stillwater, OK)	D	А
1993	Electric Power Research Insitute (EPRI)	Report on Lincoln Electric System Gas Turbine Inlet Air Cooling (Final Report EPRI TR-103464, Electric Power Research institute, Palo Alto, California)	A	D, E
1993	Bacigalupo, E., <i>et al.</i>	Power Augmentation Using an Inlet Air Chilling System in a Cogen. Power Plant Equipped with a Heavy Duty GT (Proceedings of the ASME COGEN-TURBO Power Congress and Exhibition, pp. 1-10)	D	А
1993	Bennett, B.A., et al.	Increased Output from a TEWAC Generator Using a Packaged Liquid Chiller and Process (Proceedings of the 1993 International Joint Power Generation Conference, PWR Vol. 22, pp. 63-68, ASME)	А	D
1992	Hufford, P.E.	Absorption Chillers Improve Cogeneration Energy Efficiency (ASHRAE Journal, Vol. 34, No. 3, Atlanta, Georgia)	D	
1992	Ebeling, J.A., <i>et al.</i>	Peaking Gas Turbine Capacity Enhancement Using Ice Storage for Compressor Inlet Air Cooling (ASME International Gas Turbine and Aeroengine Congress, Paper No. 92-GT-265)	D	A, E
1992	Mornhed, G., et al.	District Cooling with Gas Turbine Driven Ammonia Chillers (Proceedings of the International District Energy Association, Vol. 83, pp. 257-271, Westborough, Massachusetts)	А	D
1991	Zwillenberg, M.L., et al.	Assessment of Refrigeration-Type Cooling of Inlet Air for Essex Unit No. 9 (ASME International Power Generation Conference, Paper No. 91-JPGC-GT-4)	Е	D, A
1991	Ondryas, I.S., et al.	Options in Gas Turbine Power Augmentation Using Inlet Air Chilling (Journal of Engineering for Gas Turbines and Power, Vol. 113, No. 2, pp. 203-211)	D	E
1991	Ebeling, J.A.	Combustion Turbine Inlet Air Cooling With Thermal Energy Storage (Proceedings of the 4th International Power Generation Exhibition & Conference, Power-Gen '91)	D	A, E