Best Practices for Hybrid Systems for Capacity & Efficiency Enhancement of Combustion Turbines During Hot Weather

By Don Shepherd - Caldwell Energy Company

Sponsored by:

Turbine Inlet Cooling Association (TICA)

April 8, 2015; 1 PM (U.S. Central Time)

https://members.meetingzone.com/presenter/default.aspx

Call-In Number: 1 877 406 7969 Access Code: 2603587#

Introductions

Dharma (Don) Punwani

- Avalon Consulting, Inc.
- Executive Director, TICA

Don Shepherd
President
Caldwell Energy Company
TICA Board Member

TURBINE INLET COOLING
ASSOCIATION turbine in let cooling.org

Who is TICA?

- The Turbine Inlet Cooling Association (TICA) promotes the development and exchange of knowledge related to gas turbine inlet cooling
- The TICA website is one-stop source of TIC technical information, including Installation Database & Performance Calculator
- TICA is a non-profit organization.

TICA Member Benefits

- Access to full/detailed version of TIC Installation Database
- Access to full/detailed version of the TIC Technology Performance Calculator
- GT Users get access to the TIC Forum
- Suppliers have access to advertisement space on the TICA Website and access to booths at various electric power trade shows

TURBINE INLET COOLING
ASSOCIATION turbinoinlet cooling.org

Become a Member Today!!!

List of Series of Turbine Inlet Cooling Best Practices Webinar Presentations

- June 11, 2014: Wetted-Media Evaporative Cooling
- August 9, 2014: Fogging
- October 8, 2014: Chiller Systems
- January 22, 2015: Thermal Energy Storage
- February 11, 2015: Wet Compression
- April 8, 2015: Hybrid Systems

Agenda:

- Why Cool Combustion Turbines (CT)
- What are Hybrid Systems
- Best Practices for Using Hybrid Systems
- Maintaining your Hybrid System

Unfortunate Fundamental Characteristics of All Combustion Turbine Power Plants

- During hot weather, just when power demand is at it's peak......
 - 1. CT Total Power output decreases up to 35% below rated capacity (Extent of the decrease depends on the CT design)
 - 2. Efficiency decreases leading to increased fuel consumption (heat rate) and emissions per kWh.....up to 15% more fuel consumed (Extent of the decrease depends on the CT design)

Why CT Power Output Capacity Decreases with Increase in Ambient Temperature?

- Power output of a turbine is proportional to the mass flow rate of hot gases from the combustor that enter the turbine
- Mass flow rate of combustor gases is proportional to the flow rate of the compressed air that enters the combustor
- Compressors provide compressed air and are volumetric machines, limited by the volumetric flow rate of inlet air they can pull or suck in
- As ambient temperature increases, the air density decreases. This
 results in a decrease of the mass air flow rate
- Reduced mass flow rate of inlet air reduces the mass flow rate of the combustor gases and hence reduced power out put of turbine

Why CT Efficiency Decreases with Increase in Ambient Temperature?

- Compressor of a CT system consumes almost two-third of the turbine's gross output
- Compressor requirement increases with increase in air temperature
- Increased power required by the compressor reduces the net electric power available from the CT system

Effect of Hot Weather on CT Generation Capacity Depends on CT Design

Up to 19% capacity loss at peak demand for this CT

Turbine Inlet Cooling Overcomes the Effects of the CT Characteristic During Hot Weather

Hybrid Inlet Cooling Systems

- Hybrid systems are systems that use more than one technology together to achieve the desired inlet condition
- Systems which draw elements from different technologies to:
 - Maximize Power Output
 - Minimize Heat Rate
 - Operational flexibility as economics change
 - Reduction of capital costs by using existing resources. Site Specific

Inlet Cooling and Power Augmentation Technologies

- Evaporative (Media or Fogging)
- Chilling (Mechanical or Absorption)
- Thermal Energy Storage
- Wet Compression
- Hybrid

Example Hybrid Inlet Cooling Systems

- Electric Chiller with TES
- Electric Chiller with Absorption Chiller
- Electric Chiller with IC Engine Chiller
- Any Technology with Wet Compression
- Chillers with Fogging

Pyschrometric Chart for Some TIC Examples

TURBINE INLET COOLING
ASSOCIATION turbine inlet cooling.org

Source: Schlom, L.A., Energy-Tech June 2009

Energy Sources for Hybrid Inlet Chilling Systems

- Waste Heat
- Steam
- Fuel Natural Gas, Fuel Oil, etc.
- Solar
- Other LNG, Natural Gas, etc.

Waste Heat as Energy Source

- Process Hot Water
- Exhaust Gas off back end of HRSG
- Heat Recovery from engine driven equipment (e.g. chillers !!!)

Use Hybrid Concept to Support Auxiliary Systems ...

- Generator Cooling
- Lube Oil Cooling
- Step-Up Transformer Cooling

Examples of Hybrids

- Rolls Royce Trent 64 uses fogging and wet compression
- Rolls Royce Mehoopany uses chilling and wet compression
- Dominion Energy uses fogging and wet compression on 7EA's
- LM6000's uses chilling and wet compression

Examples of Hybrids

Las Vegas Cogen

- LM6000's (4)
- TIC System
- Fogging followed by chillers to cool inlet air to 50°F
- Only fogging when ambient <70°F
- Chiller (absorption) alone when humidity is high

Hybrid Systems Example

Calpine Clear Lake Cogeneration, Pasadena, TX (1999*)

Gas Turbines

- Three W501D (106 MW each)

Hybrid System

- Absorption chillers followed by mechanical chillers
- Absorption chillers (8,300 tons operating on hot water heated by HRSG exhaust) produce chilled water at 41°F and mechanical chillers (1,200 tons) operating in series further reduce the chilled water temperature to 38°F for storage in a 107,000 Ton-hrs TES tank

Cooling Location

Typical Coil, evap media and Fogging nozzle location Silencing panels

Maintaining your Hybrid System

- Daily Inspections
- Monthly Inspection
- Yearly Inspections

System Inspection (Daily)

- Pump seals both water and oil/grease
- System leaks
- Operating pressures
- Instruments
- Noise
- Vibration

System Inspection (Monthly)

- All Items for weekly
- Water quality
- Amp Draws on equipment
- Belts worn?
- Hoses

Chilled Water Pumps

TURBINE INLET COOLING
ASSOCIATION turbine in let cooling.org

System Inspection (yearly)

- Duct work condition
 - Materials of construction
 - Coating systems
 - Drain System
 - Obstructions
- Water Source
- Control System Integration
- Nozzles
- Evaporative media condition

System Inspection (yearly) conti.

- TES Tank Conditions
 - Materials of construction
 - Coating systems
- Instruments
- Chiller Tubes
- Winterization

Coil Inspections (downstream)

TURBINE INLET COOLING
ASSOCIATION turbineinletcooling.org

System Components

Thermal Energy Storage

TURBINE INLET COOLING
ASSOCIATION turbineinlet cooling.org

Thermal Energy Storage Tank With Ice Makers

Chiller Building

Recap

- Use equipment to its maximum efficiency
- Use existing equipment as much as possible
- Use waste heat source available
- Maintain the equipment
- Maintain the water quality
- Be creative

Thank You!

If You are not a TICA
Member, Please consider
Joining TICA Now!

TURBINE INLET COOLING ASSOCIATION turbine in let cooling.org