Turbine Air Systems

An Introduction To Turbine Inlet Chilling

Tom Tillman – Turbine Air Systems
January 16th, 2013

Sponsored by: Turbine Inlet Cooling Association (TICA)

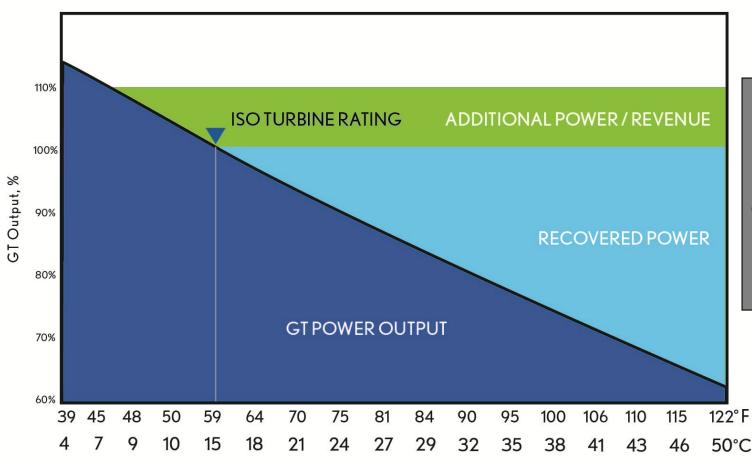
TURBINE INLET COOLING ASSOCIATION turbin einlet cooling.org

AGENDA

- Turbine Inlet Chilling 101
 - Chilling Attributes / When It Makes Sense / System Overview / Design Considerations
- Turbine Inlet Chilling Technology Types
 - Mechanical Chillers / Absorption
- Turbine Inlet Chilling Retrofits
 - Power Plant and Air-Filter Retrofit Considerations
- Turbine Inlet Chilling With Thermal Energy Storage
 - Thermal Energy Storage Overview
- Questions and Answers Session

CORE COMPETENCIES

TAS MANUFACTURING CAPABILITIES


- ISO 9001:2008 Registered
- 240,000 square feet fabrication /assembly area
- 47,000 Square feet of office space
- Crane Capability Single 80-Ton Pick
- ASME Section 9 Compliant Welding Program
- Third party NDE (x-ray, mag particle, etc)
- In-house pneumatic system pressure / leak testing

WHY TURBINE INLET CHILLING?

TIC Benefit - Aeroderivative GT Output vs. Inlet Air Temperature

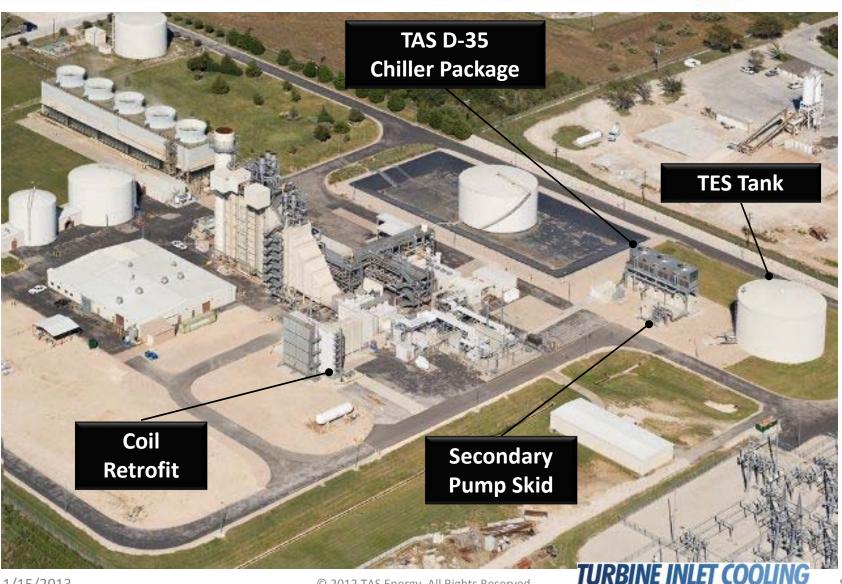
"The
fundamentals of a
gas turbine are
such that on a hot
day the gas turbine
loses output and
operates less
efficiently."

*Typical TIC "T2" (Aeroderivative)

GT Inlet Air Temperature

TIC TECHNOLOGY ATTRIBUTES

- Produces "hidden" MWs with existing assets at costs less than new built generation
- Adds significant flexibility to operations
- Maintains ideal gas turbine air temperature
- Allows for arbitraging night time power pricing for day time peak pricing with thermal storage capability
- Eliminates weather risk
- Provides emissions predictability
- Provides opportunity to offset degradation
- Achieves all of the above with lower non-fuel O&M costs



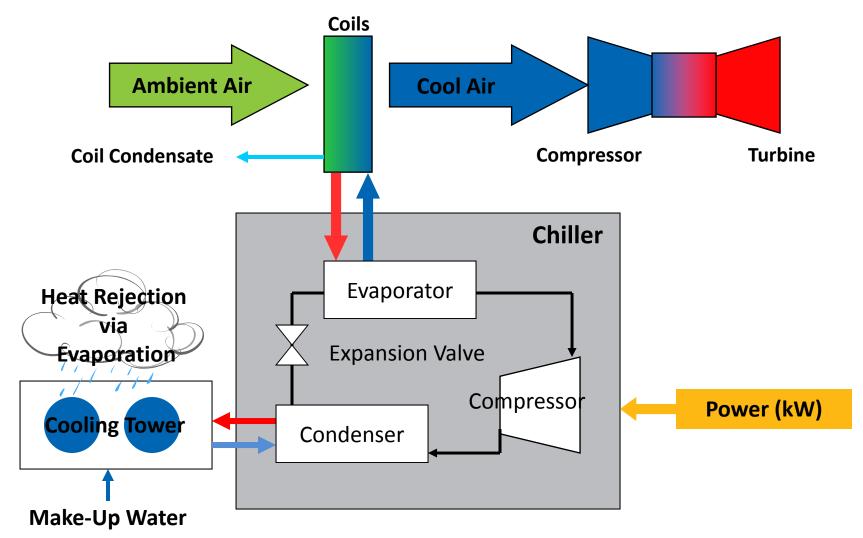
WHEN TIC MAKES SENSE

- Market demand in the form of:
 - High peak power demand or growing peak power load profile
 - Non-energy sales revenue in addition to energy sales (capacity payments – PJM market in US)
- Climate suitable to TIC(hot and humid environment)
- Muni / Coop / Gov't Utility looking to take advantage of incremental power improvement with existing assets
- Need incremental power in a relatively quick timeframe compared to new build generation (permits, construction, etc.)
- Short on a Power Purchase Agreement (PPA) obligation and needs incremental power from the installed asset

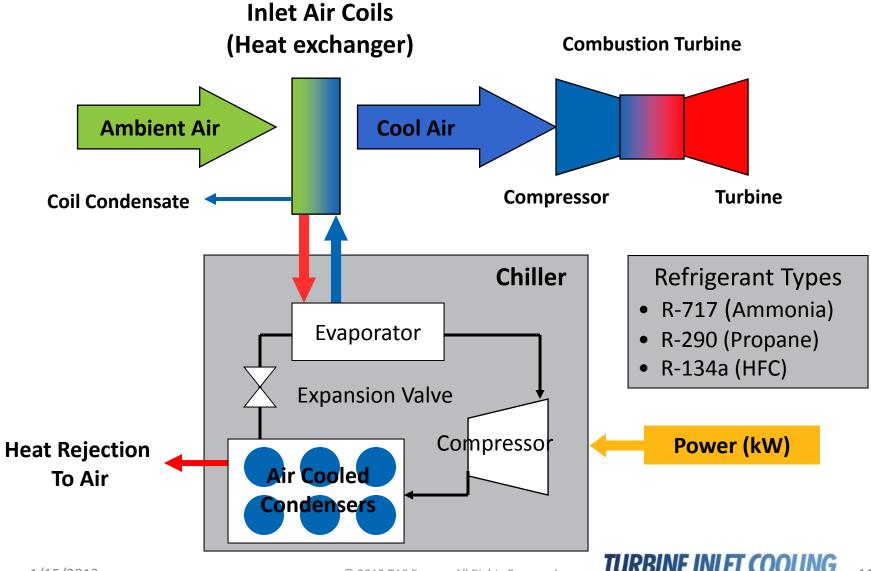
CHILLING COMPONENT OVERVIEW

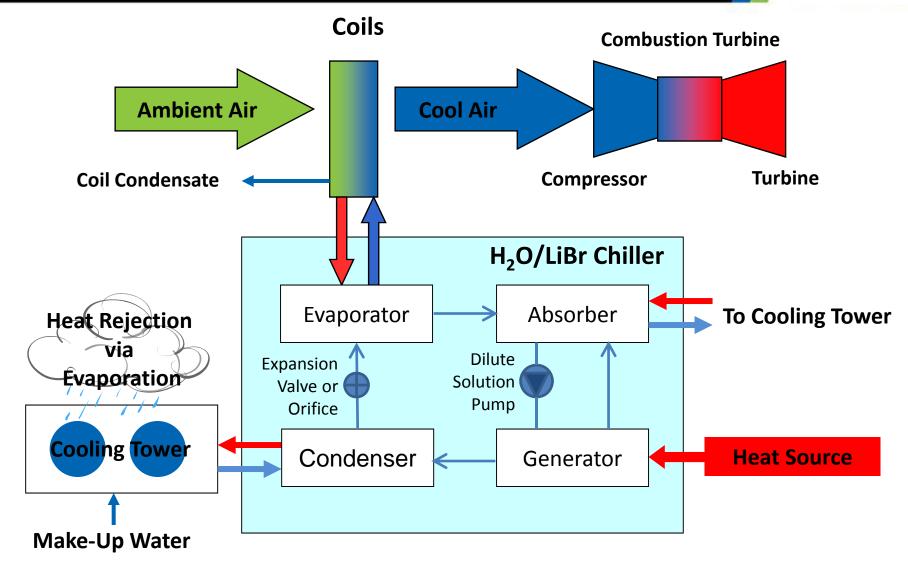
DESIGN CONSIDERATIONS

Power Plant Considerations


- Desired Plant Output
 - Satisfy Capacity Contract
 - Satisfy Competitive
 Specification
 - Site Utility Limitation
 - Optimal Heat Rate
- Thermal Energy Storage Shift (Charge vs. Discharge)
- Ambient Design
 - Dry Bulb / Wet Bulb
 - Target Inlet Temperature
 - Mass Flow
- Space Availability
- Energy Source
 - Steam or Electrical Supply

Chiller Considerations


- Inlet Coil Design
 - Face Velocity
 - Pressure Drop
 - Freeze Protection
- Chiller Package Design
 - Refrigerant Type
 - Heat Rejection Technology (Water / Air / Absorption)
 - Pump Redundancy
 - Cooling Tower Mat'ls / Sound
- Electrical
 - Feeds
 - Standards (NEC / IEC)
 - Protection (Arc Flash)
 - Controls


WATER-COOLED MECHANICAL

AIR-COOLED MECHANICAL

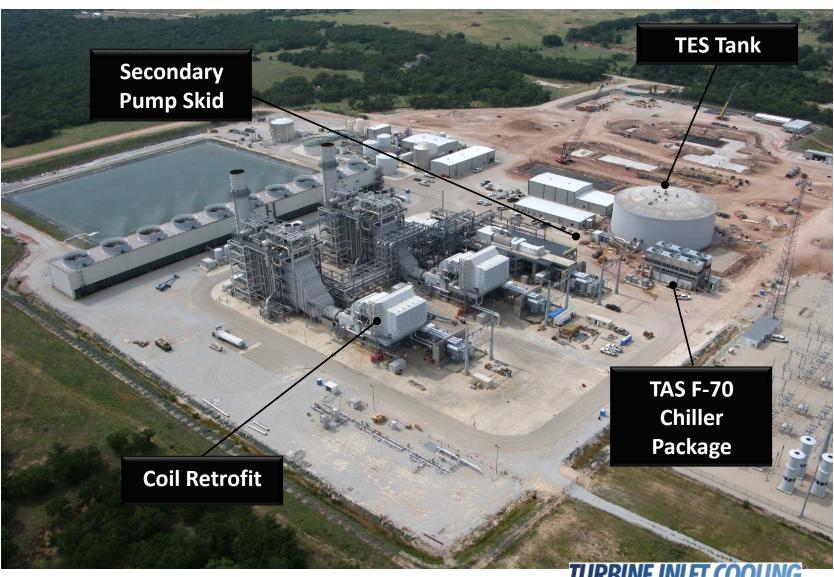
ABSORPTION

ABSORPTION CONSIDERATIONS

Advantages

- Significantly lower electrical load
- Good use of waste heat if available such as:
 - Hot water
 - LP steam
 - Direct engine exhaust
- Well paired with a Thermal
 Energy Storage (TES) system, that
 allows the absorption chiller to
 operate at constant load

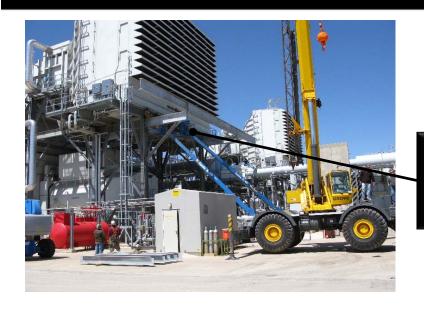
Disadvantages


- Higher capital cost
- Low thermal efficiency
 - Higher water consumption
 - Not good in an air-cooled application
- Larger equipment footprint
 - Requires around 1/3 more cooling tower capacity compared to mechanical chiller
- Potentially reduced life expectancy compared to mechanical chiller
 - Highly dependent on quality of maintenance
- Can be prone to vacuum leaks
- Possibility of solution crystallization
- Does not cycle effectively

SHIFT IN TECHNOLOGY ACCEPTANCE

- Historically Turbine Inlet Chilling (TIC) applications have been limited to aeroderivative peaking power plants only
- In the past 5-years there have been significant awards in chilling advanced combined cycle power plants globally
- Application advantages:
 - Ancillary services
 - Capacity payments
 - SuperPeak™
 - Grid flexibility with increased renewable penetration
 - Storage as spinning reserve
 - Compliments night time wind generation

TURBINE INLET CHILLING RETROFIT


RETROFIT PROJECT EXAMPLE

- <u>Customer:</u> Confidential
- <u>Site location:</u> Texas
- <u>Project Timing:</u> 2008-2009
- Outage Duration: ~15-30 Days
- <u>Construction Man-Hours:</u> ~50,000
- <u>Construction Duration:</u> ~9 Months
- <u>Project Timing:</u> 2008-2009
- <u>Turbine OEM:</u> GE Frame 7FA
- <u>Power Plant Type:</u> 2 x 1 Combined Cycle

AIR FILTER RETROFITS

Erection of Filter
Platform
Extension

Existing Filter Removal

AIR FILTER RETROFITS

Right Hand Coil Module

Four Coil Modules Installed

New Transition

2 TAS Energy. All Rights Reserved.

AIR FILTER RETROFITS

Filter Module Installed

Coil Module Access Platforms

Coil Assembly Header

RETROFIT PHOTO

FILTER HOUSE RETROFIT FEATURES

- Coil Module Sizing
- Filter House Transition
- Coil Location
- Filter House Obstructions (Forward / Aft)
- Filter House Structure / Modifications
- Filter House Ducting (Concentric / Eccentric)
- Outage Considerations (Timing / Interference)
- Chilled Water Pipe Routing
- Condensate Return

CONCENTRIC VS. ECCENTRIC

BEFORE

- Eccentric Inlet Duct
- Extended Inlet Duct for Fogging

AFTER

- Concentric Inlet Duct
- New Spacer Elevates Inlet Duct
- Existing Filter House Utilized

RETROFIT OUTAGE CONSIDERATIONS

- Parallel Construction Activities
- TIC Retrofit Should Not be Additive to Turbine Outage Durations
- At Site Construction Duration ~6 Months
- Duration From Execution to Outage ~50 Weeks
- Critical Path Retrofit Components are Air Filter Retrofit Kits / Coil Assemblies (30-35 Weeks)
- Work Can be Done In Parallel with Hot Gas Path / Major Outage Work
- Schedule Coordination a Must
- Consider Winter Outage for Performing Work

TYP. RETROFIT OUTAGE DURATIONS

Site	Duration Days Planned	Duration Days Actual
Georgia - Unit #1	21	12
Georgia - Unit #2	21	14
PJM - Unit #1	13	15
PJM - Unit #2	13	15
PJM - Unit #3	25	32
PJM - Unit #4	25	32
Texas #1	18	15
Texas #2	26	23
Texas #3	29	20
Average	21	20

- Planning durations should be 3-4 weeks
- Contractor equipment / site familiarity and capability very important
- Outage duration typically dictated by gas turbine / steam turbine maintenance
- Site coordination during proposal phase required

FILTER HOUSE COIL PIPING DESIGN

Reverse Return Header Piping

Left Hand Coil Header Piping Right Hand Coil Header Piping

www.turbineinletcooling.org

http://www.turbineinletcooling.org/coolingcalculator.html

Thank You!

Tom Tillman

Business Development Manager

ttillman@tas.com

+1 (832) 494-7586

www.tas.com

